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E F F E C T  O F  A N  E L E C T R I C  C U R R E N T  ON N E C K I N G  IN A T E N S I L E  R O D  

A. A. Byehkov  and D. N. Karpinskii UDC 539.374:537.321/322 

Necking conditions in a tensile thermoviscoplastic rod with passage through it of an alternating 
electric current are studied. Modeling is performed with allowance for the complez constitutive 
relations for the rod material, heat transfer in the rod, and the current distribution across the 
section of the rod as a function of the current frequency (skin effect). The stability of uniform 
tension is examined by linear analysis of perturbations using the Routh-Hurwitz theory. The 
results were refined by nonlinear analysis taking into account the effect of the amplitude curve 
of perturbations on the stability of plastic deformation. 

I n t r o d u c t i o n .  In a previous paper [1], we calculated necking conditions in a tensile rod using a model 
(see the bibliography in [1]) that assumes instantaneous occurrence and stabilization of local thinnings in 
the sample at an early stage of strain localization. Stable localization of shape changes is associated with 
incrcase in the number of spontaneously formed necks at rather large strains. We believe that further progress 
in studies of necking should be aimed at development of methods for controlling deformation conditions in 
samples. One of such methods is the electroplastic treatment of samples aimed at reducing energy expenditures 
and preventing necking, in particular, in wire drawing [2, 3]. 

Spitsyn and Troitskii [3] assume that the effect of an electric current on the mechanical characteristics 
of a loaded solid is associated with Joule heating, the ponderomotive forces produced by the magnetic field of 
the current, and the "electron wind" due to electron scattering by dislocations (electron-plastic effect). These 
mechanisms facilitate plastic deformation at sites of concentration of mechanical stresses, and, hence, electrical 
treatment of samples can be considered a promising technology. Maksimov and Svirina [4, 5] calculated the 
effect of Joule heat on crack-propagation conditions. As regards the effect of an electric current on necking 
conditions in a tensile rod, we are aware only of a paper by Ruzanov et al. [6], in which it is concluded from 
calculations that  a pulsed electric current does not influence necking but only exerts a general plasticizing 
effect on deformable samples. In our opinion, however, Ruzanov et al. [6] do not advance strong arguments in 
favor of the conclusions drawn, and the problem requires additional examination. 

In the present paper, we restrict ourselves to necking conditions in a solid rod made of a 
thermoviscoplastic matcrial with various strength and frequencies of the alternating electric current flowing 
through the rod. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  The necking problem for a solid rod of density p0 in uniaxial 
tension is formulated in [7]. We supplement the assumptions of [7] on deformation conditions in the rod by 
the assumption that  the alternating electric current acts on the rod at constant potential difference U at the 
rod ends. The heating of the sample is taken into account by Joule heat and the Thomson effect [8]. Assuming 
that the initial cross section of the rod A0 is homogeneous along the length, we obtain the following system 
of equations describing the behavior of the sample at large plastic strains: 

0r e_ e Ov Ov 0 (ae_~) ' C O0 020 08 O~ 
O--t = OX'  po Ot - OX --~ = k --Ox 2 + Aj ~x + "7j2 + fla -~. (1) 
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Here v is the rate of displacement,  r is the strain, 0 is the temperature,  C is the heat capacity, k is the 
thermal conductivity, /3 is the fraction of plastic work converted to heat, A is the Thomson coefficient [8], 
7 = 70(1 + c~(o - 273) ) ,  7o is the initial specific resistance, a is the temperature resistance coefficient, and j is 
the current density at constant voltage U = U0 on the sample: 

1o 

j = ~oe ~ lokw(O,O*)) / f  k~(e,O) dX. 
0 

Here k~(e, 0) = (7/70)e2e( 1 + (Aoe-Sw/(1077))2/12) in the case of a weak skin effect [8] and 

k~(e, 0) = 7_ e2~(0.277 + 0.997(A0e-e / (2 .  107.,/))1/2) 
3'0 

in the case of a strong skin effect [8], 30 and U0 are the current density and voltage on the sample at the initial 
time, and l0 is the initial length of the sample. 

The  relation between the Eulerian coordinate x and the Lagrange coordinate X is given by 

t 

x = x + / v(X, dr. ( la)  
0 

The function cr = Ft-l~b(O,e,g) specifies the nonlinear constitutive relation for the rod material. The 
Bridgman factor Ft -1 = (1 + 2Re~R)log (1 + R/(2Rc))  allows for the triaxial stress in the neck, and 
the local radius of the rod cross section R and the radius of the neck Rc are related by the formula 
Re = (1 + (On/Ox)2)3/ -/(O2n/Ox2) [11. 

We write the consti tut ive relation in the same form as in [7]: 

cr = #Ft-1~'~gmO ~. (2) 

Here #, n, rn, and t, are constants.  In this case, for (1) the following initial and boundary conditions are 
assumed: 

V V 
e , v X g'X,  0 = t = O :  e = O ,  g lo ~o ' 

00 00 (3) 
X : 0 :  v = 0 ,  o x  - O' X = 1 0 :  v = V, OX = 0  

(I/, 0", and i* are constants)'. 
2. L i n e a r  Ana ly s i s .  We consider, at the t ime to, the homogeneous t ime-dependent  solution s0, a0, 

v0, 00, and ['to of Eqs. (1) and (2) with initial and boundary  conditions (3). As in [7], a small perturbation of 
this solution (nonhomogeneous solution) is written as 

s(X, t) = s0(t) + 5e(X, t) = s0(t) + 5soerl(t-t~ i(x, 
(r(X, t) = ~0(t) + &r(X, t) = e0(t) + &roe"(t-t~ i(X, 

v (X,  t) = vo(X, t) + 5v(X, t) = vo(X, t) + 5voeU(t-tO)e i(X, (4) 

O(X, t) = O0(t) + 60(X, t)  .= O0(t) + 500e~(t-t~ i~X, 

Ft(X,  t) = Fro(t) + 5Ft(X, t) = Fro(t) + 5Ftoe~(t-t~ i(X, 

where 5s, 5~, 5v, 50, and 5Ft are the ampli tudes of perturbations,  r /=  5i/(5s) is a measure of perturbation 
growth, and ~ is a wavenumber.  The  choice of the nonhomogeneous solution (4) is based on the assumption 
that the ampli tude of the per turbat ion  is small compared to e0, a0, v0, 00, and Fr Then, the Fourier series 
of the nonhomogeneons solution can be restricted to the first term of the series. This method is commonly 
used for stationary per turbed solutions, but  it can also be employed for stability analysis of t ime-dependent 
solutions [7]. It is assumed in this case tha t  the growth rate of perturbation is much higher than the growth 
rate of the homogeneous solution [9]. 
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Substituting (4) into (1) and (2) and taking into account that Fro = 1 and 5Fro = 
-(Ao/(27r))~2e-2eoSo.o, we obtain the following system of linear equations with the unknowns ~o,  5o'0, 6vo, 
and ~00: 

( 0 ~  0r Ao ) 0~ 
+ ~ N + ~ ~e-~~  ~ 0  - ~o.0 + N ~00 = 0, 

--~roe-e~ + e-~~ -- rlpo~vo = O, (77 + ~o)~o - i~e-e~ = O, 

(~/~a0 + 270~02e2~~ + a(Oo - 273))) 5r 

+~/0&r0 + (~30e~~ + aTo32e2e~ 2 - CTI -- k~2e -2s~ ~00 = 0. 

Here s = k~(O,O*)/k~(eo,Oo). The roots of the characteristic equation of the present system determine 
the stability of the solution of the problem for uniform tension of the rod (homogeneous solution). The 
characteristic equation for the present system has the form 

�9 I 1 \  2 I " I I  " I I  ~?3 + (atl + zal)rl + (a 2 + z a 2 ) r l + a ~ + z a  3 =0,  

where 

, 1 (e_2~oC Or i o p ( C  0 ~ ' ~  = ,, 1 )~j0~e~Os, a 1 -- poC[~ 2 ~ + k p ) +  - - - ~  j -poaTo.12e2e~ a 1 = - ~  

1 2~0 Ao , _ k 0 r  ~2 0 r  0 ~  ~0kp] o , _  W , o  , , 
poC 

o~, 0r 
-- Poio a~/oJoe2~~ 2 

. 1 ( 0 r  ~2e_2~ )A~0~e~Os, 
a2 = poC ~ + POgO 

, 1 [~6e_4Eoa ~ Ao 4 2eoklO~) 0 r  e -  

0 r  ~2e_2, o O~ _ - 

,, 1 ( 0 r  A0 
a'3 = - poe \ - ~  + ~ ~2e-2E~176 - o.0) )~30s~ 3e-2e~ 

According to the Routh-Hurwitz stability theory, the solution of the problem is stable if all roots of 
the characteristic equation of the present linearized system have a negative real part. For this, it is necessary 
and sufficient that the matrix 

1 - -a~'- -a  i a~ 0 

J 

0 1 - -a~ ' - -a~ a~ 

0 0 a i --a~ --a~ 

0 a i - - a ~ - - a ~  0 

al - a ~  -a~  0 0 

have positive inners [10]. 
To calculate the homogeneous strain rate i0, we use the relation e0 = r -~~ and the temperature of 

the rod at the stage of uniform deformation 00 is determined from the solution of the equation 

000 c -g/- = 70(1 + ~(00 - 273))jo2e2~~ 2 + Zo.0 O~0 
0t" 

The stability boundary for the homogeneous solution of problem (1)-(3) corresponds to violation of 
tile condition of positive inners of the characteristic matrix. Results of calculation of this boundary for the 
constants # = 2.486.104 MPa, n = 0.52, C = 3.6-106 J / (m 2- K), k = 15 W/(m- K), 0~ = 294 K, m = 0.002, 
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Fig. 1 

v = -0.5,  P0 = 7800 k g / m  3, A0 = 4 .  10 -6 m 2 [7, 11], ?0 = 8.6- 10 -s  ~ . m ,  A = - 2 2 . 8 .  10 -6 V/K, 
= 3.3 - 10 -3 K -1 [12], and l0 = 0.05 m are shown in Fig. 1 for different values of the initial density 30 and 

frequency w of the electric current [curves 1, 2, 3, and 4 correspond to w = 0, 500 kHz, 700 kHz, and 5 MHz, 
respectively; curves 1-3 refer to a weak skin effect and curve 4 refers to a strong skin effect; j0 = 2- 107 A/m 2 
(Fig. la) and ]0 = 3.107 A / m  2 (Fig. lb)]. The homogeneous solution is stable against the perturbation for 
and co lying below the corresponding curves in Fig. la  and b. 

3. N o n l i n e a r  A n a l y s i s .  Below, we perform a nonlinear stability analysis of necking in the tensile 
sample to refine the results of the linear analysis in Sec. 2. For this, to the homogeneous solution of the 
problem for homogeneous strain ~0 --- g0 we add a perturbation of the strain of the form 

~p = ~060 sin 2 (~(x - a)), 

where 60 is the ampli tude of the initial perturbation, ~ = ~r/(b  - a )  is a wavenumber, and a < x < b, where a 
and b are the coordinates of the left and right boundaries of the perturbed region. Apparently, the coefficients 
of the Fourier series for the present perturbation decrease as N -3, where N is the Fourier-coefficient number. 
The chosen form of perturbat ion ~p ensures a small error in discarding Fourier components with N > 1 and 
is due to the necessity of comparing results of linear and nonlinear analyses. The latter allows us to examine 
necking conditions with variation in the perturbation amplitude 60. Results of calculations of the evolution 
of plastic strain (1)-(3) with perturbed initial conditions are given in Fig. 2 [~* = 1.66. 10 -2 sec -1 and 
g0 = 0.45], which shows the relative amplitude of the perturbation 6~(t) = (max c(z, t) - min~(x, t))/(~060) 

(0 < x < 10) versus the homogeneous strain c0 for various values of the initial density j0 and frequency w of 
the electric current and the wavenumber ~ (the notation is the same as in Fig. 1; J0 = 2 �9 107 (Fig. 2a and b) 
and 3.107 A/m ~ (Fig. 2c and d), and ~ = 157 (Fig. 2a and c), 314 m -1 (Fig. 2b and d)]. 

4. D i scuss ion  o f  R e s u l t s .  We analyze the results obtained. As shown in Fig. 1, at rather high strain 
rate ~*, the critical strain r depends greatly on the wavenumber ~, particularly for its small values. According 
to the results of the linear analysis (Fig. 1) at constant voltage U, an increase in the current frequency 
leads to a decrease in the stability of the rod against the perturbation. In this case, the curves in Fig. lb are 
below the curves in Fig. la  for the same values of w. Thus, an increase in the initial current density 30 favors 
earlier necking, and the effect of the electric current is most pronounced for small ~. The shift to the right 
of the curves of r in Fig. 1 with increase in f0 s worth noting. At the same time, calculations show that 
when the temperature  resistance coefficient is a = 0, these shifts are absent and all curves issue from the 

point r = 0, ( = 0. 
According to the results of the nonlinear analysis (see Fig. 2), the perturbation r first damps and 

then, upon reaching e = ~0c, the value of 6e begins to increase. In this case, for larger values of ~, the increase 
in 6~ begins later and it proceeds more slowly (the curves in Fig. 2a and c are above the curves in Fig. 2b 
and d for the same values of 30 and w). The curves for large values of w are above the curves for smaller w, 
and the curves in Fig. 2a and b are below the curves in Fig. 2c and d for the same values of ~ and w. This 
confirms the results of the linear analysis. 
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The calculations performed for various amplitudes of the initial perturbation in the range 10 .5 < 80 < 
10 -2 showed that ~r practically does not depend on the value of ~i0. In addition, the Thomson effect is found 
to have little (less than 2% of r effect on the stability of the deformable rod. 

Calculations show that the action of the alternating electric current on the deformable rod facilitates 
necking in the rod. However, the current strength affects the critical necking strain to a greater extent than 
the current frequency. The amplitude of the strain perturbation and the Thomson effect influence necking 
only slightly. 
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